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I. INTRODUCTION 

The purpose of this paper, which forms a 
continuation of the previous paper (I$), is to 
discuss the accuracy of the approximations 
given before (8) by means of comparing them 
with correct results. Further, problems 
connected with a stability of steady states 
and with an occurrence of limit cycles will be 
investigated.t 

II. NUMERICAL SOLUTION OF PARTIAL 
DIFFERENTIAL EQUATIONS 

The partial differential equations describ- 
ing the process form a system of nonlinear 
parabolic equations. 
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e 
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7 > oIx = 1:~ = 1, e = 0 (3) 

direction, but for most calculated cases 
division to 40-160 parts was sufficient. An 
average computational time was between l-5 
minute. The calculations performed have 
shown, that the proposed difference schema 
was always stable. No difficulties during its 
employment were observed. 

III. AN ANALYSIS OF STABILITY OF 
STATIONARY SOLUTIONS OF EQS. (l)-(4) 

A. Approximation by a System of Ordinary 
Diserential Equations 

When we substitute differences for partial 
derivatives with respect to space coordinate 
x(differential-difference method (1)) we 
obtain the set of ordinary differential 
equations : 

dej 1 -=- 
dr 

” 

x=o:ay/ax=o,$ =o (4) 

An implicit-explicit difference schema of 
the Crank-Nicolson type with an automatic 
control of the both step sizes was used for 
numerical solution. Memory capacity of the 
digital computer E 503, used for computa- 
tion, enabled division to 360 parts in radial 

* This article may be considered to be part XV of 
t.he series: Modelling of Chemical Reactors. 

t The symbols used in this article are the same as 
in part I. 
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Lw dy”-’ 1 -zz- 
dr h2 1 - qg- 1) Y"-2 

> 

- 2y"-'+ 1 + 2(/- 1) I - F (10) 

where 
for j = nr - 1 

and where 0j and ye’ are values of 0 and y in 
the node point x = jh (hence are only de- 
pendent on independent variable r and on 
M = l/h). 

B. First Method of Ljapunov 

For investigation of stability of a station- 
ary solution we shall use the first method of 
Ljapunov (5). For application of this method 
it is necessary to linearize Eqs. (5)-(10) in 
the neighborhood of the stationary state: 

for j = I, 2, . . . M - 2 
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Equations (12)-(17) form a system of linear 
differential equations with constant co- 
efficients. From eigenvalues of this system it 
is possible to conclude on a stability of 
steady state solutions eoj, yoj of Eqs. (5)-( lo), 
and hence also on a stability of steady state 
solutions of the original system (l)-(4). 

Let us write Eqs. (12)-(17) in the form 

where the vector function w is defined as 

w = (60, q”, 81, ql, . . . F--l, @f-l) T (19) 

The matrix A is in this case a five-diagonal 
(there are even zero elements in these five 
main diagonals). The elements of matrix A 
can be evaluated on the basis of a knowledge 
of the steady state solution (2). 

A sufficient condition for stability of 
steady states is, that the real parts of all 
eigenvalues of the real matrix A are negative. 
A single positive real part of an arbitrary 
eigenvalue will cause instability. 

C. Calculation of Eigenvalues. 
Routh-Hurwitz Criterion 

To be able to make conclusions on stabiliby 
it is necessary to know or all eigenvalues of 
the matrix A, or to use some procedure that 
enables us to avoid the search for eigen- 
values (3, 4, 5) (in this work the Routh- 
Hurwitz criterion (3) was used). 

For determination of all eigenvalues it is 
necessary to know the characteristic poly- 
nomial of the matrix A. The simple methods 
of Krylov and Leverrier (4) were used for 
the calculation of the coefficients of this 
polynomial. The whole procedure is relatively 
laborious, and was, therefore, used only for 
comparison with the above mentioned 
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FIG. 1. Compariron of trajectories from the one- 
dimensional and the two-dimensional model (phase 
plane). n = 1, y = 20, 0 = 0.2, 6 = 2.56; a = 0; 
p, = ~12; Lw = 1. - - - - - one-dimenxional approxi- 
mation. -__ two-dimension-t1 a?proximation. 

Routh-Hurwitz criterion. When applicating 
this criterion we calculate successively IV 
mainldeterminants of t’he matrix constructed 
from the coefficients of the characteristic 
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FIG. 2. Comparison of trajectories from the one- 
dimensional and the two-dimensional model (phase 
plane). n = 1, y = 20, /3 = 0.2, 6 = 2.56; a = 0; 
~1 = 7r/2; Lw = 2. - - - - - one-dimensional approxi- 
mation. -__ two-dimensional approximation. 
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FIG. 3. Comparison of trajectories from the one- 
dimensional and the two-dimensional model (phase 
plane). 12 = I, y = 20, 6 = 0.2, 6 = 9, a = 2, 
~1 = T, Lw = 2.j. - - - - - one-dimensional approxi- 
mation. ____ two-dimensional approximation. 

polynominal. If all the determinants are 
positive then t’he system under consideration 
is stable. 

The purpose of the following chapt’ers is to 
verify the validity of the one-dimensional 
model. We shall follow mainly an applica- 
bility of the approximation in the neighbor- 
hood of steal? states, a validity of conclu- 
sions on stablhty of steady stat.es made on 
the basis of the model and a degree of a 
coincidence between trajectories in the 
phase plane. 

When deriving the simplified model we 
may suppose, that we work with mean values 
of temperature and concentration within a 
particle. We then can compare these mean 
values of the variables with the integral mean 
values obtained from the two-dimensional 
model 
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e(7) = (a + 1) lo’ xV(x, T) dx (20) 

First we shall deal with a comparison of 
the two models in the case where only single 
steady state (stable or unstable) exists. The 
steady state classified on the basis of the one- 
dimensional model as stable (8) is in Figs. 
l-3 denoted A,. The mean value of the two- 
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FIG. 4. Comparison of trajectories from the one- 
dimensional and the two-dimensional model (phase 
plane). n = 1, y = 20, j3 = 0.2, 6 = 2.56; a = 0; 

PI = p/2; LW = 4. - - - - - one-dimensional approxi- 
mation. ___ two-dimensional approximation. 

dimensional model (in Figs. l-3 is denoted 
A%) can be obtained either from the solution 
of the steady state problem or as the limit 
profiIe of the transient problem. As can be 
seen from the figures both steady states A, 
and A, are stable. The initial protles of 
temperature and concentration within a 
particle were chosen constant. As is shown in 
the figures, the character of solution in the 
neighborhood of steady state is well approxi- 
mated by the one-dimensional model, but the 
steady state A, is somewhat displaced, when 
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FIG. 5. Trajectories from the two-dimensional 
model in the phase plane. n = 1; y = 20; @ = 0.4; 
6 = 3.38; a = 2; Lzu = 1. ---- - constant initial 
profiles. ___ parabolic initial profiles. 
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FIG. 6. Comparison of trajectories from the one- 
dimensional and the two-dimensional model (phase 
plane). n = 1, y = 20, 13 = 0.2, 6 = 9; a = 2; 
p, = 3.83; Lw = 2.5. 

compared with the two-dimensional case. In 
Fig. 4 the case is shown, where the one- 
dimensional model forecasts a single un- 
stable steady state for given values of pa- 

rameters. The steady state is encircled by a 
limit cycle. The steady state AT was ob- 
tained on the basis of steady state balance 
equations. The solution of the two-dimen- 
sional model (also demonstrated in the 
figure) has shown, that an asymptotic 
periodical solution exists which correspond 
in the phase plane also to a limit cycle. As for 
the steady states Al, As so the corresponding 
limit cycles are shifted in this case. It seems, 
(when taking into consideration a number of 
solved examples) that the steady state A1 is 
usually shifted in the phase plane with re- 
gards to AZ along the straight line 8 = yP 
X (1 - y) towards the higher values of 0. The 
corresponding limit cycle, if it exists at all, 
is usually shifted in the same direction and 
its diameter is greater. The character of 
solution in the neighborhood of the limit, 
cycles is usually conserved. 

The case where three stationary states 
exist (rP > (r/3*, 41 < 4 < $5) (9) is for 
two-dimensional model shown in Fig. 5 (the 
corresponding figure for one-dimensional 
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FIG. 7. The influence of Thiele modulus 6 upon the critical Lewis number Lw*. n = 1; y  = 20; p = 0.2; 
a = 0. (1) relation (33’), part I; (2) relation (33’), part I, where g, instead of y0 was used; (3) Routh-Hurwits 
ciiterion (M = 5); (4) the influence of + upon 1~~; (5) the influence of + upon go. 
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FIG. 8. The influence of Thiele modulus 4 upon the critical Lewis number Lw*. n = 1; y = 20; /3 = 0.2; 
a = 1. (1) relation (33’), part I; (2) relation (33’), part I, where y0 instead of y0 was used; (3) Routh-Hurwitz 
criterion (A4 = 5); (4) the influence of 4 upon y,; (5) the influence of 6 upon &. 
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FIG. 9. The influence of Thiele modulus 6 upon the critical Lewis number Lw*. n = 1; y = 20; p = 0.2; 
a = 2. (1) relation (33’), part I; (2) relation (33’), part I, where Q0 instead of y0 was used; (3) Routh-Hurwitz 
criterion (M = 5); (4) the influence of 4 upon yO; (5) the influence of + upon go. 
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FIG. 10. The influence of Lw upon limit cycles. 
n = 1; y = 20; p = 0.2; 6 = 9; a = 2. 

model is represented by Fig. 2, part I). 
Similarly as in the one-dimensional case in 
the phase plane exist two spheres of influence 
when considering an appurtenance to the 
upper (G) or the lower (AZ) steady state 
(the middle one is of a saddle type). The 
boundary between the two spheres of in- 
fluence is not fixed and depends on the chosen 
initial conditions t?,(x) and y&). In Fig. 5 
the full lines denote the trajectories that 
have parabolical initial concentration and 
temperature profiles y&r), B&). The dashed 
lines (in the same figure) then denote the 
t#rajectories with constant initial profiles of 
temperature and concentration. In the 
vicinity of the steady state solution the 
character of trajectories is similar to that of 
t,he one-dimensional case and is independent 
on the choice of form of initiaI conditions. 

By the proper change of parameter p1 we 
can achieve an agreement between the one- 
dimensional and the two-dimensional steady 
states. The agreement between the corre- 
sponding trajectories 0 - y is then also 
better. Such a case is shown in Fig. 6. 

STABILITY OF SOLUTION. EFFECT 
OF LEWIS NUMBER 

The purpose of this chapter is to verify 
the results obtained for the approximate 

model and to link up them with the results 
obtained by other authors (10-12). 

Let us firstly take into consideration the 
case, where a single steady state exists. No 
attention has been devoted to the problem 
of its instability heretofore. As the anaIysis 
of the one-dimensional model (8, 13) has 
shown and as was verified by the results 
based on the two-dimensional model, in this 
case there can exist an asymptotic periodical 
solution. This can be attained when the 
Lewis number exceeds certain critical value 
Lw*. The problem of determination of this 
critical value was for the approximate model 
solved in the first part of this paper (13). In 
the two-dimensional model we can determine 
the value of Lw* or by the method described 
in chapter III, or by repeated numerical 
simulation of Eqs. (l)-(4). In Figs. 7-9 
dependencies Lw” = f(4) obtained by means 
of three different methods are given. The 
line denoted 1 corresponds to the values of 
Lw* obtained from the one-dimensional 
model by using Eq. (33’) of the part I; 
dashed line 4 represents the steady state 
values of concentration yo obtained from the 
transcendental equat’ion 

Ply1 - yo) - &Ion 

c -YP(l - Yo) X exp 1 + p(1 _ yo) = 0. (21) 1 
The line 3 represents the dependence Lw* = 
f(4) obtained from the difference-differ- 
ential method by means of the Routh- 
Hurwitz criterion and 5 then corresponds to 
the values of ~0 obtained as mean values of 
the steady state concentration profiles 
within a particle. The line 2 was obtained 
when in the relation (33’) (part I) the values 
of go instead of yo were used. The line 3 can 
be taken as a very good approximation of 
actual values of Lw*, for the numerical 
simulation of Eqs. (l)-(4) gives practically 
the same value of Lw*. As can be seen from 
the figures, the agreement between the 
values of Lw* obtained from the one-dimen- 
sional model and the two-dimensional one 
is very good for lower values of Thiele 
modulus (6. For higher values of C#J the agree- 
ment between the lines 3 and 2 is, on the 
contrary, better (this can be explained by 
great relative differences between yo and go). 
Limit cycles for different values of Lewis 
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FIG. 11 FIG. 12 

FIG. 11. Periodical changes of concentration profiles within the catalyst pa&& n = 1; 7 = 20; p = 0.2; 
6 = 9; a = 2; Lw = 5; 
Curve 1 2 3 4 5 6 7 8 

Time 10.45 10.55 10.7 10.8 10.9 11.05 11.36 11 5 

FIG. 12. Periodical changes of temperature profiles wit,hin the catalyst particle. n = 1; y = 20; P = 0.2; 
6=9;a=2;Lu,=5; 
Curve 1 2 3 4 5 6 7 8 9 10 11 12 

Time 10.45 10.55 10.5 10.8 10.9 10.95 11 11.05 11.15 11.25 11.35 11.5 - -- 

number are shown in Fig. 10. With increasing 
Lw the limit cycle also increases. These 
limit cycles are, similarly as it was shown 
by Cure1 and Lapidus for CSTR (24), 
asymptotically stable from both sides. The 
limit cycles in the two-dimensional model 
have the same course of rotation as in the 
one-dimensional case. 

The form of radial concentration and tem- 
perature profiles in a particle when auto- 
oscillations take place is given in dependence 
on time in Figs. 11 and 12. On the tem- 
perature profile we can sometimes meet with 
periodical maxima between the center and 
the surface of the particle (15). 

Now we shall deal with the case, where 
three steady states may exist. As number of 

authors have shown (2, 10, 11) the middle 
steady state is always unstable. In the one- 
dimensional approximation, discussed in the 
part I, this steady state is of a saddle type 
which is a reason for its instability. A study 
of instability of the both boundary steady 
states was still not performed. In the one- 
dimensional analysis it was shown, that for 
the upper steady state critical value of Lewis 
number, Lw* exists always and for the lower 
one in certain cases. These conclusions hold 
in an analogous way in the two-dimensional 
model. If we consider the one-dimensional 
case, then in a certain range of Lewis num- 
bers there can exist around the upper steady 
state, a limit cycle (13), that disappears 
when the Lewis number is further increased. 
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Fm. 13. Unstable upper steady state (phase plane), n = 1; 7 = 20; ,CS = 0.4; B = 3.38; a = 2; (a) 
7iw = 2.5; (b) Lw = 2.25; (c) Lw = 2.12. 
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FIG. 14. Unstable upper steady state temperature profile in dependence on time. n = 1; y = 20; p = 0.4; 
6 = 3.38; a = 2, Lw = 2.12. 

To verify its existence for the two-dimen- 
sional case seems to be a difficult task. The 
case shown in Fig. 13 was followed. On the 
basis of the values of Lw*, obtained by use 
of the method described in chapter IIIA, 
the values of Lw were chosen so that the 
upper steady state was unstable. The slightly 
perturbated steady state profiles were chosen 
for the initial profiles 0,(x) and yi(z). 
An analogous dynamical analysis was per- 
formed also for the case where Lw = 2. 
Mildly perturbated steady state profile 
changed imperceptible with time, so that it 
was impossible to decide whether the change 
was caused by the error of the difference 
approximation or not. The perturbations 
were then increased and the numerical solu- 
tion has shown, that in this case the steady 
state is either stable or it is surrounded by 
a small limit cycle. The rate of unfolding 
of a trajectory in the phase plane can be 
well followed in Fig. 14, where the depend- 
ence e = e(7) is given for the case shown in 
Fig. 13 (Lw = 2.12). An unstable lower 
steady st,ate exists for very high values of 
Lewis number. 

From the case where three steady states 
can exist it is possible by a small change in 
the value of Thieles modulus to obtain the 
case where only single steady state exists; 
similar case is presented in Fig. 15 (value of 
Q is higher than $2”). The dashed line denotes 

trajectory for Lw = 1, the full line for the 
case where Lw = 5. Here the dimensionless 
temperature e attains extremal values and 
probably the single stationary state is in the 
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FIG. 15. Transition from the region of three 
steady states to the region of single steady state. 
72 = 1; y = 20; 6 = 0.4; 6 = 4.537; a = 2; 8,: 
steady state for 6 = 3.577 (used as initial profile). 
SZ: steady state for 6 = 4.537. ---- - Lw = 1. 
-----Lw = 5. 
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FIG. 16. Trajectories from the two-dimensional 
model in the phase plane. n = 1; y = 30; p = 0.15; 
6 = 5.621; a = 2; Lw = 3. 

form of a great limit cycle (but the necessary 
computation time for evaluation of this limit 
cycle would be extraordinarily high). 

CONCLUSION 

The study here presented is only an at- 
tempt to make a systematic analysis of non- 
stationary heat and mass transfer within a 
porous catalyst particle. The analytical 
criteria are given which enables one to fore- 
cast a priori dynamic properties of the sys- 
tem under consideration. It shows, that for 
values of the parameter rP 5 1 the system 
is always stable. Wei (18) obtained earlier 
the same conclusion by applying Ljapunov 
method in the functional space and recently 
was this condition given by Luss and 
Amundson (17). The condition r/3 I 1 is 
necessary and also sufficient. As is shown 
in Table la (in the first part of this study) 
parameter -@ for many important reactions 
fulfills this condition. The stationary point 
has in this case a character of node and the 
maximum temperature inside the particle 
is determined during the course of whole 
transient process by Prater relation with 
except of the cases where the initial values 
of temperature and concentration are high. 

lowed in the phase diagram, which can be 
This transient process can be easily fol- 

1- ..-_ .L/ -..~ -~ . 1 

A method of solution of partial differ- 
ential equations describing the problem is 
presented. A discussion of the stability of 
steady state solutions, based on the analysis 
of t,he svst,em of nart)ial differential eauations 

constructed on the basis of simple lumped 
parameter model (this here well approximate 
the complicated “distributed parameter 
model”), so that it is no need for solution of 
the system of partial differential equations. 
As follows from the Table la mentioned 
before, only few reactions have the values 
of parameter r/3 > 1; but all up to this time 
experimentally studied reactions have, as far 
as the authors know, the value of the param- 
eter r/3 less than (rP)*. The three stationary 
profiles of concentration and temperature 
were not experimentally realized up to date 
on the contrary with other processes where 
simultaneous heat and mass transfer with 
chemical reaction takes place, as are, for 
instance, heat and mass transfer to the sur- 
face of catalytic particle (18) or axial mixing 
in the tubular reactor (19). 

From the theoretical point of view it 
seems interesting that here we meet with a 
possibility of existence of undamped periodi- 
cal variations of the temperature and con- 
centration profiles within the particle. SO, 
for example, when 70 = 4 and 6 = 9 (see 
Fig. 3 in the first paper) the oscillations can 
exist for Lw 2 3.25. Other case is presented 
in Fig. 16 where for r/3 = 4.5 (p = 0.15) 
and Lw = 3 also exist,s a limit cycle. But in 
all the cases which were here studied the val- 
ues of Lw, necessary for occurrence of autoos- 
cillations are so high, that probably cannot be 
realized experimentally. In other words, the 
occurrence of periodical phenomena in the 
catalyst particle where an exothermic chemi- 
cal reaction with the power-law kinetics is 
going on has small probability in practice. 
The method, given in this paper, whichmakes 
use of the fact that the distributed parame- 
ter models where t’he differential operator is 
of the form (l/r”)(d/dr)[r”(d/dr)] nz = 0, 
1, 2) can be substitut.ed by the lumped 
parameter models is applicable generally. 
The possibility of mutual confrontation of 
the approximate model with the original 
one always exist,% 

SUMMARY 
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for transient process is given. The procedure 
used consist of the transformation to the 
system of ordinary differential equations 
which are then analyzed by the first method 
of Ljapunov. In the vicinity of a steady state 
solution the validity of the one-dimensional 
model is tested by comparing with the exact 
model. It is shown, that the forecasts ob- 
tained on the basis of the simple model are 
satisfactory. The effect of Lewis number on 
the stability of steady states is discussed by 
making use of the two-dimensional model. 
The conclusions are illustrated by a number 
of numerically solved examples. 
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